Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Geometry of the set of mixed quantum states

نویسندگان

  • Ingemar Bengtsson
  • Stephan Weis
  • Karol Życzkowski
چکیده

The set of quantum states consists of density matrices of order N , which are hermitian, positive and normalized by the trace condition. We analyze the structure of this set in the framework of the Euclidean geometry naturally arising in the space of hermitian matrices. For N = 2 this set is the Bloch ball, embedded in R 3. For N ≥ 3 this set of dimensionality N 2 − 1 has a much richer structure. We study its properties and at first advocate an apophatic approach, which concentrates on characteristics not possessed by this set. We also apply more constructive techniques and analyze two dimensional cross-sections and projections of the set of quantum states. They are dual to each other. At the end we make some remarks on certain dimension dependent properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Inequalities Detecting Quantum Entanglement

We present a set of inequalities for detecting quantum entanglement of 2 ⊗ d quantum states. For 2 ⊗ 2 and 2 ⊗ 3 systems, the inequalities give rise to sufficient and necessary separability conditions for both pure and mixed states. For the case of d > 3, these inequalities are necessary conditions for separability, which detect all entangled states that are not positive under partial transposi...

متن کامل

Discrepancy of Products of Hypergraphs

Discrepancy of Products of Hypergraphs Benjamin Doerr, Michael Gnewuch and Nils Hebbinghaus Max-Planck-Institut für Informatik, Stuhlsatzenhausweg 85, D-66123 Saarbrücken, e-mail: [email protected] Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22, D-04103 Leipzig, e-mail: [email protected] Institut für Informatik und Praktische Mathematik, Christian-Albrechts-Uni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011